Home » Soap News » soap making process

soap making process

The Process of Making Soap
Soap-making processes

The industrial production of soap involves continuous processes, such as continuous addition of fat and removal of product. Smaller-scale production involves the traditional batch processes. The three variations are: the ‘cold process’, wherein the reaction takes place substantially at room temperature, the ‘semiboiled’ or ‘hot process’, wherein the reaction takes place near the boiling point, and the ‘fully boiled process’, wherein the reactants are boiled at least once and the glycerol is recovered. There are two types of ‘semiboiled’ hot process methods. The first is the ITMHP (in the mold hot process)and the second is the CPHP (crockpot hot process). Typically soapmakers choose the hot process methods if they wish to remove the cure time to a three day air dry process. Most soapmakers, however, continue to prefer the cold process method. The cold process and hot process (semiboiled) are the simplest and typically used by small artisans and hobbyists producing handmade decorative soaps. The glycerineremains in the soap and the reaction continues for many days after the soap is poured into moulds. The glycerine is left during the hot-process method, but at the high temperature employed, the reaction is practically completed in the kettle, before the soap is poured into moulds. This simple and quick process is employed in small factories all over the world.

Handmade soap from the cold process also differs from industrially made soap in that an excess of fat is used, beyond that needed to consume the alkali (in a cold-pour process, this excess fat is called “superfatting”), and the glycerine left in acts as a moisturizing agent. However, the glycerine also makes the soap softer and less resistant to becoming “mushy” if left wet. Since it is better to add too much oil and have left-over fat, than to add too much lye and have left-over lye, soap produced from the hot process also contains left-over glycerine and its concomitant pros and cons. Further addition of glycerine and processing of this soap produces glycerin soap. Superfatted soap is more skin-friendly than one without extra fat. However, if too much fat is added, it can leave a “greasy” feel to the skin. Sometimes, an emollient additive such as jojoba oil or shea butter is added “at trace” (i.e., the point at which the saponification process is sufficiently advanced that the soap has begun to thicken in the cold process method) in the belief that nearly all the lye will be spent and it will escape saponification and remain intact. In the case of hot-process soap, an emollient may be added after the initial oils have saponified so they remain unreacted in the finished soap. Superfatting can also be accomplished through a process known as “lye discount” in which the soap maker uses less alkali than required instead of adding extra fats.

Cold process

Even in the cold soapmaking process, some heat is usually required; the temperature is usually raised to a point sufficient to ensure complete melting of the fat being used. The batch may also be kept warm for some time after mixing to ensure the alkali (hydroxide) is completely used up. This soap is safe to use after about 12–48 hours, but is not at its peak quality for use for several weeks.

Cold-process soapmaking requires exact measurements of lye and fat amounts and computing their ratio, using saponification charts to ensure the finished product does not contain any excess hydroxide or too much free unreacted fat. Saponification charts should also be used in hot processes, but are not necessary for the “fully boiled hot-process” soaping.

A cold-process soapmaker first looks up the saponification value of the fats being used on a saponification chart. This value is used to calculate the appropriate amount of lye. Excess unreacted lye in the soap will result in a very high pH and can burn or irritate skin; not enough lye leaves the soap greasy. Most soap makers formulate their recipes with a 4–10% deficit of lye, so all of the lye is converted and excess fat is left for skin-conditioning benefits.

The lye is dissolved in water. Then oils are heated, or melted if they are solid at room temperature. Once the oils are liquefied and the lye is fully dissolved in water, they are combined. This lye-fat mixture is mixed until the two phases (oils and water) are fully emulsified. Emulsification is most easily identified visually when the soap exhibits some level of “trace”, which is the thickening of the mixture. (Modern-day amateur soapmakers often use a stick blender to speed this process). There are varying levels of trace. Depending on how additives will affect trace, they may be added at light trace, medium trace, or heavy trace. After much stirring, the mixture turns to the consistency of a thin pudding. “Trace” corresponds roughly to viscosity. Essential oils and fragrance oils can be added with the initial soaping oils, but solid additives such as botanicals, herbs, oatmeal, or other additives are most commonly added at light trace, just as the mixture starts to thicken.

The batch is then poured into moulds, kept warm with towels or blankets, and left to continue saponification for 12 to 48 hours. (Milk soaps or other soaps with sugars added are the exception. They typically do not require insulation, as the presence of sugar increases the speed of the reaction and thus the production of heat.) During this time, it is normal for the soap to go through a “gel phase”, wherein the opaque soap will turn somewhat transparent for several hours, before once again turning opaque.

After the insulation period, the soap is firm enough to be removed from the mould and cut into bars. At this time, it is safe to use the soap, since saponification is in essence complete. However, cold-process soaps are typically cured and hardened on a drying rack for 2–6 weeks before use. During this cure period, trace amounts of residual lye are consumed by saponification and excess water evaporates.

During the curing process, some molecules in the outer layer of the solid soap react with the carbon dioxide of the air and produce a dusty sheet of sodium carbonate. This reaction is more intense if the mass is exposed to wind or low temperatures.

Hot processes

Hot-processed soaps are created by encouraging the saponification reaction by adding heat to speed up the reaction. Unlike cold-processed soap, in hot-process soaping, the oils are completely saponified by the end of the handling period, whereas with cold-pour soap, the bulk of the saponification happens after the oils and lye solution emulsification is poured into moulds.

In the hot process, the hydroxide and the fat are heated and mixed together at 80–100°C, a little below boiling point, until saponification is complete, which, before modern scientific equipment, the soapmaker determined by taste (the sharp, distinctive taste of the hydroxide disappears after it is saponified) or by eye; the experienced eye can tell when gel stage and full saponification has occurred. Beginners can find this information through research and classes. Tasting soap for readiness is not recommended, as sodium and potassium hydroxides, when not saponified, are highly caustic.

An advantage of the fully boiled hot process in soapmaking is the exact amount of hydroxide required need not be known with great accuracy. They originated when the purity of the alkali hydroxides were unreliable, as these processes can use even naturally found alkalis, such as wood ashes and potash deposits. In the fully boiled process, the mix is actually boiled (100 °C+), and, after saponification has occurred, the “neat soap” is precipitated from the solution by adding common salt, and the excess liquid is drained off. This excess liquid carries away with it much of the impurities and color compounds in the fat, to leave a purer, whiter soap, and with practically all the glycerine removed. The hot, soft soap is then pumped into a mould. The spent hydroxide solution is processed for recovery of glycerine.